FEATURES AND BENEFITS

- Floating piston rod coupling eliminates cylinder binding.
- Compact, lightweight unit with replaceable air-cylinder.
- Units are permanently lubricated.
- Optional stroke adjustment for precise, repetitive operation.
- Proximity switches are available to monitor end of stroke position of the body.
- Optional shock absorbers can be ordered for smooth operation.
- Aluminum body end blocks contain tapped holes and dowel pin holes for precision mounting or fixturing.
- Standard end plate to stop shaft vibrations.

SPECIFICATIONS

Design: Replaceable air cylinder, linear bearings on steel hardened shafts

Stroke: 12 in max. (1" increments) [304.8 mm] [25.4 mm]

Thrust Force @ 80 PSI [5.5 BAR]
140 lbs (multiply force factor by input pressure in PSI)

Extended: 1.76 lbs [8 N]
Retract: 1.61 lbs [7 N]

Recommended Speed:
1-40 in/sec [XX-XX m/sec]

Pressure Range:
Low/High 20-120 PSI [1.4-8 BAR]

Temperature Range:
Low/High -20'/150°F [-28'/80°C]

Deflection: ± 0.001 [0.03 mm]

Maximum Payload: 40 lbs [18.2 kg]

Material: High Strength, Aluminum Alloys, Steel Components

Weight: 7.0 lbs + 6.7 oz/in [3.2 kg + 5.2 g/mm]

Shaft Diameter: 3/4 in [19 mm]

Piston Diameter: 1 1/2 in [38 mm]

January 2009 - PATENTED Made in the USA

PAYLOAD FORCES

WARNING! Do not exceed mounting screw depth.


HOW TO ORDER

When ordering, please specify:
Design/Model Number and Options.

DESIGN/MODEL
AGT-5

SENSOR OPTIONS
1 = LEFT
2 = RIGHT
3 = BOTH

SENSOR CONNECTOR
1 = POTTED
2 = QUICK DISCONNECT
3 = QUICK DISCONNECT WITH RIGHT ANGLE

SENSOR TYPE*
1 = NPN
2 = PNP

STROKE 1"- 12"
(1" INCREMENTS)

SHOCK ABSORBERS

TYPE
M = METRIC
= IMPERIAL

* NOTE: Proximity sensors are 8 mm diam., 12-30 VDC, 50 mA and come with 2 meter cable.

Sensor Part # SNC08, SNQ08, SPC08, SPQ08

*NOTE: Proximity sensors are 8 mm diam., 12-30 VDC, 50 mA and come with 2 meter cable.

Sensor Part # SNC08, SNQ08, SPC08, SPQ08
<table>
<thead>
<tr>
<th>Stroke Length</th>
<th>Maximum Load (lbs)</th>
<th>Maximum Moments (in-lbs)</th>
<th>Maximum Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [25.4 mm]</td>
<td>40 [18.2 kg]</td>
<td>240 [27.1 Nm]</td>
<td>.001 [.03 mm]</td>
</tr>
<tr>
<td>2 [50.8 mm]</td>
<td>40 [18.2 kg]</td>
<td>205 [23.2 Nm]</td>
<td>.001 [.03 mm]</td>
</tr>
<tr>
<td>3 [76.2 mm]</td>
<td>40 [18.2 kg]</td>
<td>176 [19.9 Nm]</td>
<td>.003 [.07 mm]</td>
</tr>
<tr>
<td>4 [101.6 mm]</td>
<td>40 [18.2 kg]</td>
<td>155 [17.5 Nm]</td>
<td>.004 [.10 mm]</td>
</tr>
<tr>
<td>5 [127.0 mm]</td>
<td>40 [18.2 kg]</td>
<td>137 [15.5 Nm]</td>
<td>.007 [.17 mm]</td>
</tr>
<tr>
<td>6 [152.4 mm]</td>
<td>40 [18.2 kg]</td>
<td>120 [12.5 Nm]</td>
<td>.009 [.22 mm]</td>
</tr>
<tr>
<td>7 [XXX mm]</td>
<td>40 [18.2 kg]</td>
<td>110 [12.5 Nm]</td>
<td>.012 [.30 mm]</td>
</tr>
<tr>
<td>8 [XXX mm]</td>
<td>40 [18.2 kg]</td>
<td>100 [11.3 Nm]</td>
<td>.016 [.40 mm]</td>
</tr>
<tr>
<td>9 [XXX mm]</td>
<td>40 [18.2 kg]</td>
<td>93 [10.5 Nm]</td>
<td>.019 [.50 mm]</td>
</tr>
<tr>
<td>10 [XXX mm]</td>
<td>40 [18.2 kg]</td>
<td>86 [9.7 Nm]</td>
<td>.022 [.55 mm]</td>
</tr>
<tr>
<td>11 [XXX mm]</td>
<td>40 [18.2 kg]</td>
<td>80 [9 Nm]</td>
<td>.024 [.60 mm]</td>
</tr>
<tr>
<td>12 [XXX mm]</td>
<td>40 [18.2 kg]</td>
<td>75 [8.5 Nm]</td>
<td>.025 [.63 mm]</td>
</tr>
</tbody>
</table>